
1

Theory I
Algorithm Design and Analysis

(7 Hashing: Open Addressing)

Prof. Th. Ottmann

2

h(s) = hash address

h(s) = h(s´) s and s´ are synonyms with respect to h
 address collision

Hashing: General Framework

Set of keys S

Univer-
se U
of all
possible
keys

hash function h

0, …, m-1

hash table T

3

Possible ways of treating collisions

Treatment of collisions:

•  Collisions are treated differently in different methods.

•  A data set with key s is called a colliding element if bucket Bh(s) is already taken by
another data set.

•  What can we do with colliding elements?
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in
these lists.
2. Open Addressing: Colliding elements are stored in other vacant buckets. During
storage and lookup, these are found through so-called probing.

4

Hashing by chaining

Keys are stored in overflow lists

This type of chaining is also known as direct chaining.

h(k) = k mod 7

0 1 2 3 4 5 6

hash table T
pointer

colliding elements

15 2

43

53 12

19

5

5

Open addressing

Idea:
Store colliding elements in vacant (“open”) buckets of the hash table
If T[h(k)] is taken, find a different bucket for k according to a fixed rule

Example:
Consider the bucket with the next smaller index:

 (h(k) - 1) mod m

General:
Consider the sequence

 (h(k) - j) mod m

 j = 0, …, m-1

0 1 h(k) m-2 m-1

… ….

6

Probe sequences

Even more general:

Consider the probe sequence

 (h(k) – s(j,k)) mod m

j = 0, ..., m-1, for a given function s(j,k)

Examples for the function

 s(j,k) = j (linear probing)

 s(j,k) = (-1)j * (quadratic probing)

 s(j,k) = j * h´(k) (double hashing)

€

j
2

 

 

2

7

Probe sequences

Properties of s(j,k)

Sequence
 (h(k) – s(0,k)) mod m,
 (h(k) – s(1,k)) mod m,

 (h(k) – s(m-2,k)) mod m,
 (h(k) – s(m-1,k)) mod m

should result in a permutation of 0, ..., m-1.

Example: Quadratic probing

Critical:
Deletion of data sets  mark as deleted

(Insert 4, 18, 25; delete 4; lookup 18, 25)

0 1 2 3 4 5 6
h(11) = 4

s(j,k) = -1,1,-4,4,-9,9

8

Open addressing
 class OpenHashTable extends HashTable {
 // in HashTable: TableEntry [] T;
 private int [] tag;

 static final int EMPTY = 0;
 static final int OCCUPIED = 1;
 static final int DELETED = 2;

 // Constructor
 OpenHashTable (int capacity) {
 super(capacity);
 tag = new int [capacity];
 for (int i = 0; i < capacity; i++) {
 tag[i] = EMPTY;
 }
 }

 // The hash function
 protected int h (Object key) {...}

 // Function s for probe sequence
 protected int s (int j, Object key) {
 // quadratic probing
 if (j % 2 == 0)
 return ((j + 1) / 2) * ((j + 1) / 2);
 else
 return -((j + 1) / 2) * ((j + 1) / 2);
 }

9

Open addressing – lookup
 public int searchIndex (Object key) {
 /* searches for an entry with the given key in the hash table and
 returns the respective index or -1 */
 int i = h(key);
 int j = 1; // next index of probing sequence

 while (tag[i] != EMPTY &&!key.equals(T[i].key)){
 // Next entry in probing sequence
 i = (h(key) - s(j++, key)) % capacity;
 if (i < 0)
 i = i + capacity;
 }

 if (key.equals(T[i].key) && tag[i] == OCCUPIED)
 return i;
 else
 return -1;
}

 public Object search (Object key) {
 /* searches for an entry with the given key in the hash table and
 returns the respective value or NULL */
 int i = searchIndex (key);
 if (i >= 0)
 return T[i].value;
 else
 return null;
}

10

Open addressing – insert

 public void insert (Object key, Object value) {
 // inserts an entry with the given key and value
 int j = 1; // next index of probing sequence
 int i = h(key);

 while (tag[i] == OCCUPIED) {

 i = (h(key) - s(j++, key)) % capacity;
 if (i < 0)
 i = i + capacity;
 }

 T[i] = new TableEntry(key, value);
 tag[i] = OCCUPIED;

}

11

Open addressing – delete

 public void delete (Object key) {
 // deletes entry with given key from the hash table

 int i = searchIndex(key);

 if (i >= 0) {
 // Successful search
 tag[i] = DELETED;
 }
}

12

Test program

 public class OpenHashingTest {
 public static void main(String args[]) {

 Integer[] t= new Integer[args.length];

 for (int i = 0; i < args.length; i++)

 t[i] = Integer.valueOf(args[i]);

 OpenHashTable h = new OpenHashTable (7);
 for (int i = 0; i <= t.length - 1; i++) {

 h.insert(t[i], null);#

 h.printTable ();
 }

 h.delete(t[0]); h.delete(t[1]);

 h.delete(t[6]); h.printTable();
 }

}

Call:
java OpenHashingTest 12 53 5 15 2 19 43

Output (quadratic probing):
[] [] [] [] [] (12) []

[] [] [] [] (53) (12) []

[] [] [] [] (53) (12) (5)

[] (15) [] [] (53) (12) (5)

[] (15) (2) [] (53) (12) (5)

(19) (15) (2) [] (53) (12) (5)

(19) (15) (2) (43) (53) (12) (5)

(19) (15) (2) {43} {53} {12} (5)

13

Probe sequences – linear probing

 s(j,k) = j

Probe sequence for k:

 h(k), h(k)-1, ..., 0, m-1, ..., h(k)+1,

Problem:
“primary clustering”

 Pr (next object ends at position 2) = 4/7

 Pr (next object ends at position 1) = 1/7

Long chains are extended with higher probability than short ones.

0 1 2 3 4 5 6
5 53 12

14

Efficiency of linear probing

Successful search:

Failed search:

Efficiency of linear probing decreases drastically as soon as the load factor
gets close to the value 1.

€

Cn ≈
1
2
1+

1
(1−α)











€

C'n ≈
1
2
1+

1
(1−α)2











 Cn (successful) C´n (failed)
0.50 1.5 2.5
0.90 5.5 50.5
0.95 10.5 200.5
1.00 - -

15

Quadratic probing

 s(j,k) =

Probe sequence for k:

 h(k), h(k)+1, h(k)-1, h(k)+4, ...

Permutation, if m = 4l + 3 is prime.

Problem: secondary clustering, i.e. two synonyms k and k´ always run through the
same probe sequence.

€

(−1) j * j
2

 

 

2

16

Efficiency of quadratic probing

Successful search:

Failed search:
€

Cn ≈1−
α
2

+ ln 1
(1−α)










€

C'n ≈
1

1−α
−α + ln 1

(1−α)










 Cn (successful) C´n(failed)
0.50 1.44 2.19
0.90 2.85 11.40
0.95 3.52 22.05
1.00 - -

17

Double hashing

Idea: Choose another hash function h´

 s(j,k) = j · h´(k)

Probe sequence for k:

 h(k), h(k)-h´(k), h(k)-2h´(k), ...

Requirement:
Probing sequence must correspond to a permutation of the hash addresses.

Hence:
h´(k) ≠ 0 and h´(k) no factor of m, i.e. h´(k) does not divide m.

Example:
h´(k) = 1 + (k mod (m-2))

18

Example

Hash functions: h(k) = k mod 7
 h´(k) = 1 + k mod 5

Insert sequence: 15, 22, 1, 29, 26

In this example we can do with a single probing step almost every time.

•  Double hashing is as efficient as uniform probing.

•  Double hashing is simpler to implement.

0 1 2 3 4 5 6

15

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

15 22

15 22 1

15 29 22 1

h´(22) = 3

h´(29) = 5

h´(26) = 2

h´(1) = 2

19

Improving successful search –
motivation

 Hash table of size 11; double hashing with

 h(k) = k mod 11 and

 h´(k) = 1 + (k mod (11 – 2)) = 1 + (k mod 9)

 Already inserted: 22, 10, 37, 47, 17
Yet to be inserted: 6 and 30

 h(6) = 6, h´(6) = 1 + 6 = 7

 h(30) = 8, h´(30) = 1 + 3 = 4

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

22 47 37 17 10

22 47 37 6 17 10

20

Improving successful search

In general:

Insert:
- k collides with kold in T[i], i.e. i = h(k) - s(j,k) = h(kold) - s(j´,kold)
- kold is already stored in T[i]

Idea:
Find a vacant bucket for k or kold

Two options:

(O1) kold remains in T[i]
 consider new position h(k) - s(j+1,k) for k

(O2) k replaces kold
 consider new position h(kold) - s(j´+1, kold) for kold

if (O1) or (O2) finds a vacant bucket
then insert the respective key
 done
else follow (O1) or (O2) further

21

Improving successful search

Brent’s method: only follow (O1)

Binary tree probing: follow (O1) and (O2)

k collides with k´

k gives way k´´ gives ways

k´ gives way

k´´´ gives way

k gives way

k collides with k´´´´

k collides with k´´´

k collides with k´´

done

done

done

k gives way

22

Improving successful search

Problem: kold replaced by k
 next position in probe sequence for kold?

Giving way is simple for kold if:

 s(j, kold) - s(j -1, kold) = s(1,kold)

for all 1 ≤ j ≤ m -1.

This is, e.g., true for linear probing and double hashing.

23

Example

Hash functions: h(k) = k mod 7
 h´(k) = 1 + k mod 5

Insert sequence: 12, 53, 5, 15, 2, 19

h(5) = 5 occupied by k´= 12

Consider:

h´(5) = 1  h(5) -1 · h´(5)

 5 pushes 12 from its bucket

0 1 2 3 4 5 6

53 12

24

Improving unsuccessful search

Lookup k:
k´>k in probe sequence  lookup failed

Insert:
smaller keys push away greater keys

Invariant:
All keys in the probe sequence before k are smaller than k
(but not necessarily in ascending order)

Problems:

•  The “pushing“ process may trigger a “chain reaction”

•  k´ pushed away by k: position of k´ in probe sequence?

  Required:

 s(j,k) - s(j -1,k) = s(1,k), 1 ≤ j ≤ m

25

Ordered hashing

Lookup

 Input: key k
Output: Information about data set with key k, or null
Begin at i  h(k)
while T[i] not empty and T[i] .k < k do

 i  (i – s(1,k)) mod m
 end while;
if T[i] occupied and T[i] .k = k

 then search successful
 else search failed

26

Ordered hashing

Insert

Input: key k
 Begin at i  h(k)
 while T[i] not empty and T[i] .k ≠ k do

 if k < T[i].k
 then if T[i] is removed
 then exit while-loop
 else // k pushes away T[i].k
 swap T[i].k with k
 i = (i – s(1,k)) mod m

end while;

 if T[i] is not occupied
 then insert k in T[i]

