Theory |
Algorithm Design and Analysis

(7 Hashing: Open Addressing)

Prof. Th. Ottmann

Hashing: General Framework "

:::::::::::

Set of keys S

(]
@]
Univer § hash function h
@]
se U 0 2
of all 0 °
possible§ S 0, ..., m-1
keys o o
(] (@]
(@]
o hash table T
°
(]

h(s) = hash address

h(s) = h(s’) < s and s” are synonyms with respect to h
address collision 2

Possible ways of treating collisions '\

FREIBURG

Treatment of collisions:
« Collisions are treated differently in different methods.

A data set with key s is called a colliding element if bucket B, is already taken by
another data set.

« What can we do with colliding elements?
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in
these lists.
2. Open Addressing: Colliding elements are stored in other vacant buckets. During
storage and lookup, these are found through so-called probing.

Hashing by chaining

Keys are stored in overflow lists
h(k) = kmod 7

o 1 2 3 4 &5 6

hash table T
pointer

> colliding elements

_/

This type of chaining is also known as direct chaining.

uT FO
..........
eeeeeeee

Open addressing "

..........
vvvvvvvv

Idea:
Store colliding elements in vacant (“open”) buckets of the hash table
If TTh(k)] is taken, find a different bucket for k according to a fixed rule

Example:
Consider the bucket with the next smaller index:
(h(k) - 1) mod m

0o 1 h(k) m-2 m-1

General:
Consider the sequence
(h(k) - j) mod m

Probe sequences

Even more general:
Consider the probe sequence
(h(k) — s(j,k)) mod m

j=0, ..., m-1, fora given function s(/,k)

Examples for the function
S(j,k) = (linear probing)
s(k)=(-1y * Br (quadratic probing)
S(j,k) =j* h'(k) (double hashing)

:::::::::::

Probe sequences

Properties of s(j,k)

Sequence
(h(k) — s(0,k)) mod m,
(h(k) — s(1,k)) mod m,

(h(k) — s(m-2,k)) mod m,
(h(k) — s(m-1,k)) mod m

should result in a permutation of O, ..., m-1.

Example: Quadratic probing
0 1 2 3 4 5 6

s(k) =-1,1,-4,4,-9,9
Critical:
Deletion of data sets - mark as deleted

(Insert 4, 18, 25; delete 4; lookup 18, 25)

..........
vvvvvvvv

Open addressing

class OpenHashTable extends HashTable {
// 1in HashTable: TableEntry [] T;
private int [] tag;

static final int EMPTY = 0;

static final int OCCUPIED = 1;
static final int DELETED = 2;

// Constructor
OpenHashTable (int capacity) {
super (capacity) ;

tag = new int [capacity];
for (int i = 0; 1 < capacity; i++)
tagl[i] = EMPTY;

}

// The hash function
protected int h (Object key) {...}

// Function s for probe sequence
protected int s (int J, Object key)
// quadratic probing

{

if (3 % 2 == 0)

return ((3 + 1) / 2) * ((3 + 1)
else

return -((J + 1) / 2) * ((J + 1)

/ 2);

/ 2);

uuuuuuuuuuu
xxxxxxxxxx
uuuuuuuu

Open addressing — lookup "

uuuuuuuuuuu
xxxxxxxxxx
uuuuuuuu

public int searchIndex (Object key) {
/* searches for an entry with the given key in the hash table and
returns the respective index or -1 */
int i = h(key);

int 3 = 1; // next index of probing sequence
while (tag[i] != EMPTY &&l!key.equals(T[1i].key)) {

// Next entry in probing sequence

i = (h(key) - s(j++, key)) % capacity;

if (i < 0)

i =1 + capacity;

}
if (key.equals(T[i].key) && tag[i] == OCCUPIED)

return i;
else
return -1;

}

public Object search (Object key) {
/* searches for an entry with the given key in the hash table and
returns the respective value or NULL */
int i = searchIndex (key);
if (1 >= 0)
return T[i].value;
else
return null; 9

Open addressing — insert "

uuuuuuuuuuu
vvvvvvvvvv
uuuuuuuu

public void insert (Object key, Object wvalue) {
// inserts an entry with the given key and wvalue
int 3 = 1; // next index of probing sequence

int 1 = hi(key);

while (tag[i] == OCCUPIED) {
i = (h(key) - s(j++, key)) % capacity;
if (1 < 0)
i = 1 + capacity;
}
T[1i] = new TableEntry(key, wvalue);
tag[i] = OCCUPIED;

10

Open addressing — delete "

uuuuuuuuuuu
INFORMATIK
uuuuuuuu

public void delete (Object key) {
// deletes entry with given key from the hash table

int 1 = searchIndex (key);

if (1 >= 0) {
// Successful search
tag[i] = DELETED;

11

Test program

public class OpenHashingTest {
public static void main(String args[]) {

Integer[] t= new Integer[args.length];

for (int 1 = 0; 1 < args.length; i++)

t[i] = Integer.valueOf (args[i]);

OpenHashTable h = new OpenHashTable
(int 1 = 0; 1 <= t.length - 1;
h.insert(t[i], null);#
h.printTable () ;

(7)7

for i++) |

}
h.delete (t[0]);
h.delete(t[6]);

h.delete(t[1]);
h.printTable () ;

}

Call:
java OpenHashingTest 12 53 5 15 2 19 43

Output (quadratic probing):
1 *1 [*1 [1 1[1

1 o1 01 []
I N
(1 (5 [1 []

(53)

[1 (15 (2) []
(15) (2) []

(43) (33)

{43} {53}

uT FO
INFORMATIK
uuuuuuuu

12

Probe sequences — linear probing l'

..........
vvvvvvvv

S(.k) =J
Probe sequence for k:

h(k), h(k)-1, ..., 0, m-1, ..., h(k)+1,

Problem:
“primary clustering”

Pr (next object ends at position 2) = 4/7

Pr (next object ends at position 1) = 1/7

Long chains are extended with higher probability than short ones.
13

Efficiency of linear probing "

aaaaaaaaaa

Successful search:

C, zl(l+ !)
2 (1-a)

C‘n—~~—l 1+ 12
2 (I-a)

Failed search:

o C, (successful) C’, (failed)
0.50 1.5 2.5
0.90 5.5 50.5
0.95 10.5 200.5
1.00 - -

Efficiency of linear probing decreases drastically as soon as the load factor «

gets close to the value 1. y

Quadratic probing "

...........

Gk = D H

Probe sequence for k:
h(k), h(k)+1, h(k)-1, h(k)+4, ...

Permutation, if m=4/+ 3 is prime.

Problem: secondary clustering, i.e. two synonyms k and k" always run through the
same probe sequence.

15

Efficiency of quadratic probing A

aaaaaaaaaa
uuuuuuuu

Successful search:

Czl—g+ln(!)
2

n

Failed search:

" l-a (1-a)

o C, (successful) C’,(failed)
0.50 1.44 2.19
0.90 2.85 11.40
0.95 3.52 22.05
1.00 - -

16

Double hashing "

...........

ldea: Choose another hash function h’
S(,k) =Jj - h'(k)
Probe sequence for k:

h(k), h(k)-h"(k), h(k)-2h"(K), ...

Requirement:
Probing sequence must correspond to a permutation of the hash addresses.

Hence:
h'(k) # 0 and h'(k) no factor of m, i.e. h’(k) does not divide m.

Example:
h’(k) =1+ (k mod (m-2))

17

Example A4

uuuuuuuuu
INFORMATIK

Hash functions: h(k) = kmod 7
h'(k)=1+ kmod 5

Insert sequence: 15, 22, 1, 29, 26
0O 1 2 3 4 5 6

h'(22) =

h(1) =2

h'(29) =

h'(26) =

In this example we can do with a single probing step almost every time.
* Double hashing is as efficient as uniform probing.

* Double hashing is simpler to implement. 18

Improving successful search — O
motivation

Hash table of size 11; double hashing with
h(k) = k mod 11 and
h'(k)=1+ (kmod (11 —-2)) =1+ (kmod 9)

Already inserted: 22, 10, 37,47, 17
Yet to be inserted: 6 and 30

h(6)=6,h(6)=1+6=7

1 2 4 6 14 9 1

h(30)=8, h'(30)=1+3=4

0 1 2 3 4 5 6 / 8 9 10

19

Improving successful search "

FREIBURG

In general:

Insert:
- k collides with k_,,in T[1], i.e. i = h(k) - S(j,k) = h(k,4) - SU ,K;g)
- k4 IS already stored in TJ/]

Idea:
Find a vacant bucket for kor k_,,

Two options:

(O1) K,y remains in T[i]
consider new position h(k) - s(j+1,k) for k

(02) k replaces k4
consider new position h(k,,y) - S(+1, k) for k_,

if (O1) or (O2) finds a vacant bucket
then insert the respective key

done

else follow (O1) or (O2) further 20

Improving successful search "

..........
vvvvvvvv

Brent's method: only follow (O1)

k collides with k’

k gives way/ k™ gives way

k collides with k™ done
k gives WV k” gives ways
k collides with k™" done
k gives WV k" gives way
k collides with k""" done

Binary tree probing: follow (O1) and (O2)

21

Improving successful search "

...........

Problem: k,,,replaced by k
—> next position in probe sequence for k_,?

Giving way is simple for k_, if:
S(/’ kold) - S(/ '1’ kold) = 3(1 ’kold)
forall1<j <m-1.

This is, e.qg., true for linear probing and double hashing.

3 4

Brent (04 (04 (04
~l+—+—+—+..<2.5
C” 2 4 15
' |
C”~1—(x
3 4
Binarytree a o (04
=~l+—+—+— <2.2
C” 2 4 15

22

Example A4

..........
vvvvvvvv

Hash functions: h(k) = kmod 7
h'(k)=1+ kmod 5

Insert sequence: 12, 53, 5, 15, 2, 19

h(5) = 5 occupied by k'= 12
Consider:
h'(5)=1-> h(5)-1-h(5)

- 5 pushes 12 from its bucket

23

Improving unsuccessful search 0N

FREIBURG

Lookup k:
k>k in probe sequence - lookup failed

Insert:
smaller keys push away greater keys

Invariant:
All keys in the probe sequence before k are smaller than k
(but not necessarily in ascending order)

Problems:

* The “pushing” process may trigger a “chain reaction”

* k' pushed away by k: position of k" in probe sequence?
- Required:

S(,k)-s(j-1,k)=s(1,k),1<j<m
24

Ordered hashing l'

...........
.....

Lookup

Input: key k
Output: Information about data set with key k, or null
Begin at i < h(k)
while T[i] not empty and T]i] .k < k do
i< (i—s(1,k)) mod m
end while;
if T[i] occupied and T]i] .k = k
then search successful
else search failed

25

Ordered hashing

Insert

Input: key k
Begin at i € h(k)
while T[i] not empty and T[i] .k # k do
if k < T[i].k
then if T[] is removed
then exit while-loop
else // k pushes away T]i].k
swap T]i].k with k
i=(i—s(1,k)) mod m
end while:

if Ti] is not occupied
then insert k in T[i]

:::::::::::

26

